3 research outputs found

    Efficient Algorithms for Artificial Neural Networks and Explainable AI

    Get PDF
    Artificial neural networks have allowed some remarkable progress in fields such as pattern recognition and computer vision. However, the increasing complexity of artificial neural networks presents a challenge for efficient computation. In this thesis, we first introduce a novel matrix multiplication method to reduce the complexity of artificial neural networks, where we demonstrate its suitability to compress fully connected layers of artificial neural networks. Our method outperforms other state-of-the-art methods when tested on standard publicly available datasets. This thesis then focuses on Explainable AI, which can be critical in fields like finance and medicine, as it can provide explanations for some decisions taken by sub-symbolic AI models behaving like a black box such as Artificial neural networks and transformation based learning approaches. We have also developed a new framework that facilitates the use of Explainable AI with tabular datasets. Our new framework Exmed, enables nonexpert users to prepare data, train models, and apply Explainable AI techniques effectively.Additionally, we propose a new algorithm that identifies the overall influence of input features and minimises the perturbations that alter the decision taken by a given model. Overall, this thesis introduces innovative and comprehensive techniques to enhance the efficiency of fully connected layers in artificial neural networks and provide a new approach to explain their decisions. These methods have significant practical applications in various fields, including portable medical devices

    ExMed: An AI Tool for Experimenting Explainable AI Techniques on Medical Data Analytics

    Get PDF
    The recent explosion of demand for Explainable AI (XAI) techniques has encouraged the development of various algorithms such as the Local Interpretable Model-Agnostic Explanations (LIME) and the SHapley Additive exPlanations ones (SHAP). Although these algorithms have been widely discussedby the AI community, their applications to wider domains are rare, potentially due to the lack of easy-to-use tools built around these methods. In this paper, we present ExMed, a tool that enables XAI data analytics for domain experts without requiring explicit programming skills. In particular, it supports data analytics with multiple feature attribution algorithms for explaining machine learning classifications and regressions. We illustrate its domain of applications on two real world medicalcase studies, with the first one analysing COVID-19 control measure effectiveness and the second one estimating lung cancer patient life expectancy from the artificial Simulacrum health dataset. We conclude that ExMed can provide researchers and domain experts with a tool that both concatenates flexibility and transferability of medical sub-domains and reveal deep insights from data

    Fully Connected Networks on a Diet With the Mediterranean Matrix Multiplication

    No full text
    This paper proposes the Mediterranean Matrix Multiplication, a new, simple and practical randomized algorithm that samples angles between the rows and columns of two matrices with sizes m, n, p to approximate matrix multiplication in O(k(mn+np+mp)) steps, where k is a constant only related to the precision desired. The number of instructions carried out is mainly bounded by bitwise operators, amenable to a simplified processing architecture and compressed matrix weights. Results show that the method is superior in size and number of operations to the standard approximation with signed matrices. Equally important, this paper demonstrates a first application to machine learning inference by showing that weights of fully-connected layers can be compressed between 30× and 100× with little to no loss in inference accuracy. The requirements for pure floating-point operations are also down as our algorithm relies mainly on simpler bitwise operators
    corecore